

Peter Coombes

Bonacci Water, Melbourne University and Newcastle University

BONACCI

Philosophy

- Key motivations include integrated water cycle management, sustainability, minimising carbon footprints, innovation and forensic analysis of systems
- We need to understand operation of systems, synergies and the detail
- Need to approach sustainability as a integrated systems concept
- Sustainability is NOT a cost + add on to an otherwise traditional project.

Observations

- A diverse portfolio of water sources and strategies is required to secure Australia's water futures
- The synergistic benefits of the decentralised water cycle management are often overlooked
 - Reductions in stormwater, water and wastewater infrastructure
 - Impacts on environment and water security
 - Urban food bowls
- The decentralised water management approach provides
 - A buffer against the impacts of climate change
 - Availability of local water sources increases with population

Observations

- Sustainable developments create water security this value must be counted
- Traditional design standards and methods cannot be used to design integrated strategies
- Application of unrealistic objectives and constraints to sustainable projects – not applied to BAU
- Selection of boundary conditions of analysis changes economic results
- Need systems analysis that includes feedback with the planning process
- Every project moves society towards the next augmentation and further environmental impact
- Need to supplement to capacity of existing infrastructure and facilitate restoration of catchments

Natural System

Water table

Urban Water Cycle

Runoff into dams supplying Perth

Current sources of urban water

Available water in cities

Decentralised water sources

A constrained solution set

The integrated urban water cycle

The Opportunity

- Population growth ~ 1% per annum
 - Include new dwellings and buildings in water planning
 - 30% of dwellings by 2050
- Urban renewal ~ 1.5% per annum
 - Include renovated or replacement dwellings and buildings in water planning
 - 44% of dwellings and buildings by 2050
 - Decentralised strategies can add capacity to aging stormwater, sewerage and water supply infrastructure systems
- Total impact > 74% of dwellings and buildings could include decentralised strategies by 2050
 - Reduce demand for water and requirement for centralised infrastructure

South East Dams: rainfall & Runoff

Serpentine rainfall

Pearce Rainfall

Kwinana rainfall

Perth rainfall

Performance of rainwater tanks in Perth

Natural variation & climate change

Conceptual relative catchment efficiency

Perth's water futures: including decentralised strategies

Perth's water futures: including decentralised strategies - improved water security

Scenario	Augmentation timing (year)				
	BAU	RWT	RWT+DM	RWT+DM+WW	
BAU	2041, 2052				
New houses		2047	2053	>2055	
New+ 1% houses		2052	>2055	>2055	
New+ 2% houses		>2055	>2055	>2055	

Results: economics and CO₂ emissions

Economic benefits derived from reduced regional operating costs

	Benefit (\$/house)			
Scenario	RWT	RWT+DM	RWT+DM+WW	
New houses	1,098	1,732	3,403	
New + 1% houses	984	1,716	3,109	
New + 2% houses	113	171	322	

Change in CO₂ emissions

6	Change in greenhouse gas emissions (%)			
Scenario	RWT	RWT+DM	RWT+DM+WW	
New houses	-7	-15	-35	
New + 1% houses	-12	-24	-56	
New + 2% houses	+24	+-7	-24	

Systems and Synergies: a lot scale example

- 84% (95 m²) roof area connected to tanks
- Two 2,200 L tanks supply all household water uses
- Trickle top up with mains water
- 4A rated washing machine
- Existing water use is 183 kL/annum
- Two residents

Monitoring results

- Installation costs:
 - Tanks: \$2,350
 - Washing machine: \$940
- 6 years monitoring
- Reduced impacts
 - Water: 131 kL/yr (71%)
 - Electricity: 19% reduction
 - CO2: 1,126 kg/yr
 - Detergent use
- Savings:
 - Water: \$167/yr
 - Electricity: \$146
 - Detergent: \$1029

A systems response

- Reduced water use
 - Washing machine14%
 - Lower waterpressures: 8%
 - Behavior change: 5%
- Reduced energy use
 - Washing machine
 - Lower water pressures and flow rates

Impact on CO₂ emissions from decentralised water strategies

Economic benefits derived from reducing operating costs

Wastewater discharges

Stormwater runoff

Economic Evaluation

Greenhouse Gas Emissions

Doncaster Hill - brownfield site

- Urban renewal of a Principal Activity Centre
- Increase density to accommodate 15,000 people
- Key motivation includes development of an exemplar sustainability precinct

Water demands

Wastewater discharges

Stormwater runoff

Nitrogen Loads

Greenhouse gas emissions

Water industry economics

Economics - include benefits of saving water

Economics - include deferral or avoidance of augmentation

Water savings

Wastewater

Economics

Conclusions

- Rainwater, stormwater and wastewater within cities is an untapped resource
 - 60% to 90% reductions in mains water demand is possible
- We cannot generalise about the impacts of climate change
- The synergistic benefits of the decentralised water cycle management are often overlooked
 - Reductions in stormwater, water and wastewater infrastructure
 - Impacts on environment and water security
- The decentralised water management approach provides
 - A buffer against the impacts of climate change
 - Availability of local water sources increases with population