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PhilosophyPhilosophy
•• Key motivations include integrated water Key motivations include integrated water 

cycle management, sustainability, minimising cycle management, sustainability, minimising 
carbon footprints, innovation and forensic carbon footprints, innovation and forensic 
analysis of systemsanalysis of systems

•• We need to understand operation of We need to understand operation of 
systems, synergies and the detailsystems, synergies and the detail

•• Need to approach sustainability as a Need to approach sustainability as a 
integrated systems conceptintegrated systems concept

•• Sustainability is NOT a cost + add on to an Sustainability is NOT a cost + add on to an 
otherwise traditional project.otherwise traditional project.



ObservationsObservations
• A diverse portfolio of water sources and 

strategies is required to secure Australia’s 
water futures

•• The synergistic benefits of the The synergistic benefits of the decentraliseddecentralised
water cycle management are often overlooked water cycle management are often overlooked 
–– Reductions in stormwater, water and wastewater Reductions in stormwater, water and wastewater 

infrastructureinfrastructure
–– Impacts on environment and water securityImpacts on environment and water security
–– Urban food bowlsUrban food bowls

• The decentralised water management 
approach provides
–– A buffer against the impacts of climate changeA buffer against the impacts of climate change
–– Availability of local water sources increases with Availability of local water sources increases with 

populationpopulation



ObservationsObservations
•• Sustainable developments create water security Sustainable developments create water security –– this this 

value must be countedvalue must be counted
•• Traditional design standards and methods cannot be Traditional design standards and methods cannot be 

used to design integrated strategiesused to design integrated strategies
•• Application of unrealistic objectives and constraints to Application of unrealistic objectives and constraints to 

sustainable projects sustainable projects –– not applied to BAUnot applied to BAU
•• Selection of boundary conditions of analysis changes Selection of boundary conditions of analysis changes 

economic results economic results 
•• Need systems analysis that includes feedback with Need systems analysis that includes feedback with 

the planning processthe planning process
•• Every project moves society towards the next Every project moves society towards the next 

augmentation and further environmental impactaugmentation and further environmental impact
•• Need to supplement to capacity of existing Need to supplement to capacity of existing 

infrastructure and facilitate restoration of infrastructure and facilitate restoration of 
catchmentscatchments



Natural SystemNatural System



Urban Water CycleUrban Water Cycle



Runoff into dams supplying PerthRunoff into dams supplying Perth
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Current sources of urban waterCurrent sources of urban water
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Available water in citiesAvailable water in cities
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Decentralised water sourcesDecentralised water sources
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A constrained solution setA constrained solution setA constrained solution set
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The integrated urban water cycle The integrated urban water cycle The integrated urban water cycle 
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The OpportunityThe Opportunity
•• Population growth ~ 1% per annumPopulation growth ~ 1% per annum

–– Include new dwellings and buildings in water Include new dwellings and buildings in water 
planningplanning

–– 30% of dwellings by 205030% of dwellings by 2050
•• Urban renewal ~ 1.5% per annum Urban renewal ~ 1.5% per annum 

–– Include renovated or replacement dwellings and Include renovated or replacement dwellings and 
buildings in water planningbuildings in water planning

–– 44% of dwellings and buildings by 205044% of dwellings and buildings by 2050
–– DecentralisedDecentralised strategies can add capacity to aging strategies can add capacity to aging 

stormwater, sewerage and water supply stormwater, sewerage and water supply 
infrastructure systemsinfrastructure systems

•• Total impact > 74% of dwellings and buildings could Total impact > 74% of dwellings and buildings could 
includeinclude decentraliseddecentralised strategies by 2050strategies by 2050
–– Reduce demand for water and requirement for Reduce demand for water and requirement for 

centralisedcentralised infrastructureinfrastructure



South East Dams: rainfall & RunoffSouth East Dams: rainfall & Runoff
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Distribution of rainfall in PerthDistribution of rainfall in Perth

Rainfall



Serpentine rainfallSerpentine rainfall
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Pearce RainfallPearce Rainfall
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KwinanaKwinana rainfallrainfall
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Perth rainfallPerth rainfall
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Performance of rainwater tanks in Performance of rainwater tanks in 
PerthPerth
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Natural variation & climate changeNatural variation & climate change

Climate variationClimate variation
50% reduction in rainfall = 50% reduction in rainfall = 
73% reduction in runoff73% reduction in runoff
26% reduction in tank yield  26% reduction in tank yield  

Climate changeClimate change
53% reduction in 53% reduction in 
RunoffRunoff
6% reduction in 6% reduction in 
rainwater yieldrainwater yield



Conceptual relative Conceptual relative catchmentcatchment
efficiencyefficiency

 

Rainfall (mm/yr)

R
un

of
f (

m
m

/y
r)

Runoff 
into 

dams 

500

Runoff from urban 
catchments (roofs 

and paved 
surfaces) 

Impact of 
climate 
change 

on runoff

Runoff available in cities 
when no runoff to dams



PerthPerth’’s water futures: including s water futures: including 
decentralised strategiesdecentralised strategies
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PerthPerth’’s water futures: including s water futures: including 
decentralised strategies decentralised strategies --
improved water securityimproved water security

Augmentation timing (year)Augmentation timing (year)
ScenarioScenario

BAUBAU RWTRWT RWT+DMRWT+DM RWT+DM+WWRWT+DM+WW

BAUBAU 2041, 20522041, 2052

New housesNew houses 20472047 20532053 >2055>2055

New+ 1% housesNew+ 1% houses 20522052 >2055>2055 >2055>2055

New+ 2% housesNew+ 2% houses >2055>2055 >2055>2055 >2055>2055



Results: economics and COResults: economics and CO22 emissionsemissions

Benefit ($/house)Benefit ($/house)
ScenarioScenario

RWTRWT RWT+DMRWT+DM RWT+DM+WWRWT+DM+WW

New housesNew houses 1,0981,098 1,7321,732 3,4033,403

New + 1% housesNew + 1% houses 984984 1,7161,716 3,1093,109

New + 2% housesNew + 2% houses 113113 171171 322322

--2424+7+7+24+24New + 2% housesNew + 2% houses
--5656--2424--1212New + 1% housesNew + 1% houses
--3535--1515--77New housesNew houses

RWT+DM+WWRWT+DM+WWRWT+DMRWT+DMRWTRWT
Change in greenhouse gas emissions (%)Change in greenhouse gas emissions (%)

ScenarioScenario

Economic benefits derived from reduced regional operating costsEconomic benefits derived from reduced regional operating costs

Change in COChange in CO22 emissionsemissions



Systems and Synergies: a lot Systems and Synergies: a lot 
scale examplescale example

• 84% (95 m2) roof area 
connected to tanks

• Two 2,200 L tanks 
supply all household 
water uses

• Trickle top up with 
mains water

• 4A rated washing 
machine

• Existing water use is 
183 kL/annum

• Two residents

Roof
area:  
95 m2
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Monitoring resultsMonitoring results
• Installation costs:

– Tanks: $2,350
– Washing machine: $940

• 6 years monitoring
• Reduced impacts

– Water: 131 kL/yr (71%)
– Electricity: 19% reduction
– CO2: 1,126 kg/yr
– Detergent use

• Savings:
– Water: $167/yr
– Electricity: $146
– Detergent: $1029 Mains top up volume

Overflow

Rainwater 
space

Pump

Anaerobic space
Water supply 

to house

Mains water 
supply

Float

Roofwater
Valve



A systems responseA systems response

• Reduced water use
– Washing machine 

14%
– Lower water 

pressures: 8%
– Behavior change: 5%

• Reduced energy use
– Washing machine
– Lower water 

pressures and flow 
rates
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Impact on COImpact on CO22 emissions from emissions from 
decentralised water strategiesdecentralised water strategies
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Economic benefits derived Economic benefits derived 
from reducing operating costsfrom reducing operating costs

0

1000

2000

3000

4000

5000

6000

B
ro

ke
n 

H
ill

D
en

ili
qu

in

Eu
ro

bo
da

lla

H
as

tin
gs

K
em

ps
ey

M
ud

ge
e

N
ar

ra
br

i

Pa
rk

es

Tw
ee

d

C
en

tr
al

 c
oa

st

N
ew

ca
st

le

Sy
dn

eyR
eg

io
na

l w
at

er
 s

ys
te

m
s 

be
ne

fit
s 

($
/lo

t)

1 kL tank
3 kL tank
5 kL tank
10 kL tank



Armstrong Armstrong 
Creek IWCM Creek IWCM 

StrategyStrategy



Water SupplyWater Supply
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Wastewater dischargesWastewater discharges
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Requirement Requirement 
for for 

Stormwater Stormwater 
InfrastructureInfrastructure
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Stormwater runoffStormwater runoff
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Economic EvaluationEconomic Evaluation
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Greenhouse Gas EmissionsGreenhouse Gas Emissions
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Doncaster Hill Doncaster Hill –– brownfieldbrownfield sitesite
•• Urban renewal of a Principal Activity CentreUrban renewal of a Principal Activity Centre
•• Increase density to accommodate 15,000 peopleIncrease density to accommodate 15,000 people
•• Key motivation includes development of an exemplar Key motivation includes development of an exemplar 

sustainability precinctsustainability precinct
 



Water demandsWater demands



Wastewater dischargesWastewater discharges
 



Stormwater runoffStormwater runoff
 



Nitrogen LoadsNitrogen Loads
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Water industry economicsWater industry economics
 



Economics Economics –– include benefits of include benefits of 
saving watersaving water

 



Economics Economics –– include deferral or include deferral or 
avoidance of augmentationavoidance of augmentation
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IWCM at GidgegannupIWCM at Gidgegannup



Water savingsWater savings
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WastewaterWastewater
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EconomicsEconomics
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ConclusionsConclusions
•• Rainwater, stormwater and wastewater within Rainwater, stormwater and wastewater within 

cities is an untapped resourcecities is an untapped resource
–– 60% to 90% reductions in mains water demand is 60% to 90% reductions in mains water demand is 

possiblepossible

•• We cannot We cannot generalisegeneralise about the impacts of about the impacts of 
climate changeclimate change

•• The synergistic benefits of the The synergistic benefits of the decentraliseddecentralised
water cycle management are often overlooked water cycle management are often overlooked 
–– Reductions in stormwater, water and wastewater Reductions in stormwater, water and wastewater 

infrastructureinfrastructure
–– Impacts on environment and water securityImpacts on environment and water security

• The decentralised water management 
approach provides
–– A buffer against the impacts of climate changeA buffer against the impacts of climate change
–– Availability of local water sources increases with Availability of local water sources increases with 

populationpopulation
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