

Stormwater Biofiltration Systems FAWB and beyond...

Dr Belinda Hatt

Bracken Ridge Bioretention Basin (BCC)

Baltusrol Estate (Australand)

Victoria Park (Landcom)

Cremorne Street (City of Yarra)

AECOM

Baltusrol Estate (Australand)

Bourke Street Tree Planters (Lend Lease)

Building Bioretention Planters (Portland, Oregon, USA)

Standard Biofilter Design

What is FAWB?

- FAWB is a joint venture between the Institute for the Sustainable Water Resources, Monash University and AECOM Design + Planning in establishing a Victorian government funded research facility
- FAWB industry partners:
 - Manningham City Council (Vic)
 - Melbourne Water (Vic)
 - Vic Roads (Vic)

AECOM

- Landcom (NSW)
- Brisbane City Council (Qld)
- Adelaide and Mount Lofty Ranges Natural Resources Management Board (SA)

FAWB Research

Outline

- Overview of key findings from FAWB research
- Alternative filter media study
- Bio-infiltration
- Accumulation of heavy metals
- Future research

AECOM

Key Findings

Design:

- Filter media
- Plant selection
- System size
 - Integrated approach
 - Clogging & breakthrough
- Submerged zone
 - Plant survival
 - Nitrogen removal

Non-vegetated filters

TABLE 2. Pollutant Removal Summary for Six Filter Media Types

	TSS	ТР	TN	тос	Cu	Mn	Pb	Zn
			Event mean h	nydraulic loading	(g/m²)			
	29	0.08	0.45	1	0.06	0.01	0.15	0.22
			Load	Reduction (%)				
S	99 ± 1	97 ± 1	38 ± 1	59 ± 8	97 ± 1	94 ± 1	99 ± 1	99 ± 1
SL	93 ± 4	-65 ± 16	-18 ± 15	-103 ± 17	97 ± 1	-32 ± 54	99 ± 1	99 ± 1
SLH	92 ± 3	-143 ± 17	-37 ± 4	-146 ± 19	96 ± 1	-71 ± 19	99 ± 1	98 ± 1
SLVP	90 ± 3	-73 ± 15	-23 ± 12	-129 ± 22	94 ± 2	-26 ± 52	95 ± 2	96 ± 4
SLCM	92 ± 4	-409 ± 40	-111 ± 41	-178 ± 13	94 ± 1	-152 ± 100	97 ± 1	96 ± 1
SLCMCH	96 ± 1	-437 ± 50	-164 ± 14	-165 ± 5	93 ± 1	-178 ± 189	97 ± 1	96 ± 1
Load reductions are reported as the mean of three replicates ± standard deviation. Note: a negative load reduction								

indicates leaching of previously retained pollutants and/or native material.

AECOM

Hatt, B. E., T. D. Fletcher and A. Deletic (2008). Hydraulic and pollutant removal performance of fine media stormwater filtration systems. *Environmental Science & Technology* **42(7)**: **2535-2541**.

Design Optimisation Study

	Vegetation	Inflow volume	Filter	Filter	Inflow	TP		PO4 3-	
Factors tested			media depth	media type	conc.	Concentration (mg/L)	Removal (%)	Concentration (mg/L)	Removal (%)
	None	Std.	700	SL	Std.	0.083 (15)	81 (4)	0.064 (15)	50 (15)
	Carex	Std.	700	SL	Std.	0.023 (22)	95 (1)	0.013 (21)	90 (2)
Vegetation	Dianella	Std.	700	SL	Std.	0.092 (19)	78 (5)	0.072 (16)	44 (20)
	Microleana	Std.	700	SL	Std.	0.074 (12)	83 (3)	0.050 (22)	61 (14)
	Leucophyta	Std.	700	SL	Std.	0.098 (9)	77 (3)	0.076 (13)	40 (19)
	Melaleuca	Std.	700	SL	Std.	0.070 (17)	84 (3)	0.034 (35)	74 (13)
Filter media depth	Carex	Std.	500	SL	Std.	0.032 (26)	93 (2)	0.016 (24)	87 (4)
	Carex	Std.	300	SL	Std.	0.038 (22)	91 (2)	0.022 (18)	83 (4)
	Microleana	Std.	500	SL	Std.	0.078 (14)	82 (3)	0.062 (17)	52 (16)
	Microleana	Std.	300	SL	Std.	0.078 (6)	82 (1)	0.053 (6)	58 (4)
	Melaleuca	Std.	500	SL	Std.	0.060 (39)	86 (6)	0.033 (60)	74 (21)
	Melaleuca	Std.	300	SL	Std.	0.050 (40)	88 (5)	0.024 (79)	81 (18)
Filter media	Carex	Std.	700	SLVP	Std.	0.040 (31)	91 (3)	0.021 (35)	83 (7)
type	Carex	Std.	700	SLCM	Std.	0.264 (48)	38 (78)	0.226 (49)	-78 (>100)

Bratieres, K., T. D. Fletcher, A. Deletic and Y. Zinger (2008). Optimisation of the treatment efficiency of biofilters; results of a large-scale laboratory study. *Water Research* 42(14): 3930-3940

ity

Filter media: conclusions

- Soil and sand-filters provide:
 - Excellent TSS removal
 - Excellent metals removal
- Use of an appropriate soil type also provides:
 - Excellent P removal (total and dissolved)
- Removal of N is more complicated and not governed by media type alone

Vegetation Trials

(b) Total N Total Nitrogen

- For nutrients:
 - Plants are important, and
 - There are <u>significant</u>
 <u>differences</u> between
 species

Vegetation Trials

Total Phosphorus

AECOM

For nutrients:

- Plants are important, and
- There are <u>significant</u> <u>differences</u> between species

Results: N removal

Submerged Zone

The presence of a permanently submerged zone <u>>300 mm</u> made from <u>sand or gravel</u> <u>with a carbon source</u> (around 5% by volume) will:

- Improve nitrate/nitrite (NO_x) removal, by promoting denitrification
- Improve Cu and Zn removal (to meet ANZECC targets)
- Support plant survival during dry periods and therefore
- Ensure TN removal after dry spells

Alternative Filter Media

- Recommended biofilter specification: loamy sand base (e.g. FAWB)
- Proposals from industry/consultants: sand base + organic matter and fertiliser
- Advantages:

AECO

- Easily and reliably reproduced from inert material
- Greater control and precision over final media characteristics

Alternative Filter Media

AECOM

Results – Sand-based biofilters

Influence of vegetation

Results – Sand-based biofilters

Influence of vegetation

Influence of filter media

Results – Sand-based biofilters

Influence of vegetation Influence of filter media Temporal evolution

Alternative Filter Media Study

Conclusion and recommendations:

Advantages:

AECOM

- NO nitrogen leaching
- Filter media easily obtained
- Simple formula -> reliably reproduced

Disadvantages:

- Poor performance for first 6 months
- Slightly lower performance after 1 year

FAWB

Bio-infiltration

Case Study: Allotment rain-garden

Rangeview Road, Mt Evelyn

- Very low permeability (in theory 0.05 mm/hr!)
 - "you can't build infiltration there!"
- Close to infrastructure (lining required)
- Use of scoria
- Performance over time
 - The reality of infiltration rate
 - The 'growing' role of ET

AECOM

Rangeview Rd

Lining and offset distances

Soil type	Saturated hydraulic conductivity (mm/h)	Minimum distance from structures and property boundaries (m)			
Sand	> 180	1			
Sandy clay	36-180	2			
Weathered or fractured rock	3.6-36	2			
Medium clay	3.6-36	4			
Heavy clay	0.036-3.6	5			

Source: WSUD: Engineering Procedures (2005)

5.8

- Partial lining
- Subsequent testing

Layers

Loamy sand Sand (trans) Gravel (trans) Scoria

Scoria with carbon source

AECOM

FAWB Facility Water B

• Rare overflow

AECOM

- Fast shallow exfiltration
- V slow deep exfiltration (most difficult soils in Melb)
- Substantial ET losses (increase with time)
- Near-complete restoration of block's hydrologic cycle

The reality of permeability

- Significant vertical profile
- Upper layer highly permeable promotes further evapotranspiration

Depth	Wetted	Average exfiltration	Exfiltration rate (mm/h)
range	Area	rate over entire depth	for given 'slice' (mm/h)
(mm)	(m ²)	(mm/h)	
900-1200	3.24	40	266
750-900	1.62	3	33
650-750	1.08	0.3	4
480-650	1.84	0.05	0.4
0-480	15.26	0.01	0.01

How long will a biofilter last?

Breakthrough of heavy metals

FAWB Facility for Advancing Water Biofiltration

AECOM

How long will a biofilter last?

Years to breakthrough of zinc

	Donth	Perth							
Filter Media	Depth (m)	% of impervious catchment							
	(11)	1	2	3	4	5			
	0.3	3	7	11	15	18			
Loamy sand	0.5	6	12	18	25	31			
	0.7	8	17	26	35	44			
Loamy sand +	0.3	2	5	8	11	14			
vermiculite+	0.5	4	9	14	18	23			
perlite	0.7	6	13	19	26	33			
Loomy cond L	0.3	4	9	14	18	23			
Luany Sanu +	0.5		15	23	31	39			
composi	0.7	11	22	33	44	55			

AECON

How long will a biofilter last?

- Study of 29 biofilters in Brisbane, Sydney & Melbourne
 - Varying design characteristics, system age, catchment characteristics
 - Land-use, development type and climate were all found to influence accumulation of heavy metals
 - Results compared to national soil quality targets
 - Lead was the first metal to reach the human Soil Investigation Level
 - Zinc was the first metal to reach the ecological Soil Investigation Level

Influence of size and land use

Influence of size and land use

Influence of climate

Influence of climate

FAWB Facility for Advancing Water Biofiltration

AECOM

Implications

• If...

AECON

- Rainfall is high
- Past or present industrial land-use
- Biofilter is a retrofit
- ...heavy metals will accumulate to levels of concern at a faster rate
- Will filter media be contaminated and require special disposal?
 - Possibly, but semi-frequent maintenance can avoid this

Looking to the future

• Influence of plants on nitrogen removal by biofiltration

(In collaboration with the Department of Water and Melbourne Water)

- Reconnecting urban streams to their riparian zones
- Cities as Water Supply Catchments

Thank you!

Adoption Guidelines can be downloaded from: <u>www.monash.edu.au/fawb/products</u>

