Wungong Urban Water Project
A major innovation in alternative water supply in WA

Wayne Schafer | GHD | Principle Water Resources Engineer
Stuart Devenish | Devenish Consulting |
Content

1. Overview
2. Water Demands
3. Options Assessment
4. Governance Issues
Wungong Urban Water Master Plan
The Plan

• Development:
 – Area 1,580 ha
 – 16,000 dwellings
 – Population 40,000

• Wungong Urban Master Plan
 – Showcase best practice in sustainable urban development
 – Natural resource management
 – Energy-efficient housing
 – Water sensitive urban design
 - Park Avenues and Living Streams
 - Non-drinking water (NDW) supply
The Objectives

• Model to guide development in similar water sensitive areas
• Reduce potable water demand to 50 kL/person/yr by:
 – Adopting ‘waterwise’ practices
 – Utilising alternative water source
• Manage urban stormwater :
 – Innovative best management practices
 – Provide a sustainable NDW source
 – Protect water quality & quantity in receiving environment
The Project

- NDW supply scheme (3rd pipe system)
- Alternative water sources
Content

1. Overview
2. Water Demands
3. Options Assessment
4. Governance Issues
NDW Uses

• In-house
 – Toilet flushing
 – Cold water inlet to washing machines

• Ex-house
 – Irrigation
 – Washing cars, paving etc.

• Irrigation of public areas
 – Public Open Space (POS)
 – Landscaping
 – Schools
NDW Demands (Basis for Design)

• In-house
 – WC Waterwise Calculator

• Ex-house - Irrigation
 – Application 730mm/yr
 – Peak week 30mm
 – Peak instant
 - 20% houses irrigate on same day
 - Rate 0.5 L/sec/house
 - 80% of controllers set to irrigate between 4am and 6am

• Ex-house - Other
NDW Demands – Cont.

• Irrigation of public areas
 – Application
 • Turf 780 mm/yr (Active)
 • Other 400 mm/yr (Passive)
 – Area
 • Total area 238 ha
 • Irrigate 156 ha (83 ha turf, 73 ha landscape)
 – Peak week 40/30 mm/wk (active/passive)
 – Peak instant less than & does not coincide with domestic peak
NDW Demands – Cont.

- Residential lot yield & domestic irrigation area

<table>
<thead>
<tr>
<th>Type</th>
<th>Dwellings</th>
<th>Irrigation area/lot (m²/lot)</th>
<th>Irrigation Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R5</td>
<td>111</td>
<td>500</td>
<td>6</td>
</tr>
<tr>
<td>R20</td>
<td>9,839</td>
<td>175</td>
<td>172</td>
</tr>
<tr>
<td>R30</td>
<td>2,190</td>
<td>105</td>
<td>23</td>
</tr>
<tr>
<td>R35</td>
<td>1,894</td>
<td>91</td>
<td>17</td>
</tr>
<tr>
<td>R40</td>
<td>1,856</td>
<td>77</td>
<td>14</td>
</tr>
<tr>
<td>R60</td>
<td>456</td>
<td>56</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Irrigation Area: 235 ha
NDW Demands – Cont.

<table>
<thead>
<tr>
<th>Total NDW Demand</th>
<th>Unit Res. Demand (R20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg Annual</td>
<td>5.0 GL/yr (14 ML/d)</td>
</tr>
<tr>
<td>Avg Day Peak Week</td>
<td>27 ML/d</td>
</tr>
<tr>
<td>Max Day</td>
<td>29 ML/d</td>
</tr>
<tr>
<td>Peak Instant</td>
<td>1,700 L/s</td>
</tr>
</tbody>
</table>

Peak instant NDW?
Review of design criteria
Seasonality of NDW Demand
Content

1. Overview
2. Water Demands
3. Options Assessment
4. Governance Issues
Options

• Local groundwater
• Stormwater harvesting & aquifer storage and recovery
• Sewer mining
Local groundwater

- **Availability:**
 - Available allocation:
 - Superficial Aquifer - 650 ML/yr
 - Leederville Aquifer - 0 ML/yr
 - Trade existing water entitlements:
 - Superficial Aquifer - 291 ML/yr
 - Leederville Aquifer - 47 ML/yr
Stormwater harvesting & aquifer storage and recovery (ASR)
Ecological Water Requirements

- Southern River at Anaconda Drive

Equation:

\[y = 2.2764x^{0.8593} \]

Average Monthly Flow (ML):

<table>
<thead>
<tr>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>8</td>
<td>12</td>
<td>80</td>
<td>260</td>
<td>609</td>
<td>866</td>
<td>970</td>
<td>750</td>
<td>432</td>
<td>152</td>
<td>28</td>
</tr>
<tr>
<td>139</td>
<td>40</td>
<td>76</td>
<td>229</td>
<td>589</td>
<td>1349</td>
<td>1767</td>
<td>1907</td>
<td>1408</td>
<td>762</td>
<td>340</td>
<td>129</td>
</tr>
</tbody>
</table>

Monthly EWR (ML):

- Pre Dev EWR
- Post Dev EWR
Yield Analysis

- Diversion efficiency
Harvested volume (monthly)

Assuming a 20 ML/day Pumping Capacity

<table>
<thead>
<tr>
<th>Year</th>
<th>Est Dev Discharge</th>
<th>Est Pre-Dev Flows</th>
<th>Est Vol Missed</th>
<th>Est Harvested Vol</th>
<th>Annual Est EWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>3.5</td>
<td>5.0</td>
<td>0.0</td>
<td>0.7</td>
<td>8.9</td>
</tr>
<tr>
<td>1998</td>
<td>5.6</td>
<td>3.9</td>
<td>0.2</td>
<td>1.1</td>
<td>8.9</td>
</tr>
<tr>
<td>1999</td>
<td>7.8</td>
<td>4.7</td>
<td>1.0</td>
<td>2.3</td>
<td>8.9</td>
</tr>
<tr>
<td>2000</td>
<td>9.9</td>
<td>7.2</td>
<td>3.9</td>
<td>1.9</td>
<td>8.9</td>
</tr>
<tr>
<td>2001</td>
<td>5.1</td>
<td>3.0</td>
<td>0.1</td>
<td>0.6</td>
<td>8.9</td>
</tr>
<tr>
<td>2002</td>
<td>7.2</td>
<td>4.0</td>
<td>0.7</td>
<td>1.4</td>
<td>8.9</td>
</tr>
<tr>
<td>2003</td>
<td>8.3</td>
<td>5.7</td>
<td>1.6</td>
<td>2.2</td>
<td>8.9</td>
</tr>
<tr>
<td>2004</td>
<td>6.4</td>
<td>4.3</td>
<td>0.8</td>
<td>1.3</td>
<td>8.9</td>
</tr>
<tr>
<td>2005</td>
<td>8.7</td>
<td>6.1</td>
<td>1.7</td>
<td>2.0</td>
<td>8.9</td>
</tr>
<tr>
<td>2006</td>
<td>3.7</td>
<td>2.5</td>
<td>0.1</td>
<td>0.3</td>
<td>8.9</td>
</tr>
</tbody>
</table>

Assuming a 100 ML/day Pumping Capacity

<table>
<thead>
<tr>
<th>Year</th>
<th>Est Dev Discharge</th>
<th>Est Pre-Dev Flows</th>
<th>Est Vol Missed</th>
<th>Est Harvested Vol</th>
<th>Annual Est EWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>3.5</td>
<td>5.0</td>
<td>0.0</td>
<td>0.7</td>
<td>8.9</td>
</tr>
<tr>
<td>1998</td>
<td>5.6</td>
<td>3.9</td>
<td>0.2</td>
<td>1.1</td>
<td>8.9</td>
</tr>
<tr>
<td>1999</td>
<td>7.8</td>
<td>4.7</td>
<td>1.0</td>
<td>2.3</td>
<td>8.9</td>
</tr>
<tr>
<td>2000</td>
<td>9.9</td>
<td>7.2</td>
<td>3.9</td>
<td>1.9</td>
<td>8.9</td>
</tr>
<tr>
<td>2001</td>
<td>5.1</td>
<td>3.0</td>
<td>0.1</td>
<td>0.6</td>
<td>8.9</td>
</tr>
<tr>
<td>2002</td>
<td>7.2</td>
<td>4.0</td>
<td>0.7</td>
<td>1.4</td>
<td>8.9</td>
</tr>
<tr>
<td>2003</td>
<td>8.3</td>
<td>5.7</td>
<td>1.6</td>
<td>2.2</td>
<td>8.9</td>
</tr>
<tr>
<td>2004</td>
<td>6.4</td>
<td>4.3</td>
<td>0.8</td>
<td>1.3</td>
<td>8.9</td>
</tr>
<tr>
<td>2005</td>
<td>8.7</td>
<td>6.1</td>
<td>1.7</td>
<td>2.0</td>
<td>8.9</td>
</tr>
<tr>
<td>2006</td>
<td>3.7</td>
<td>2.5</td>
<td>0.1</td>
<td>0.3</td>
<td>8.9</td>
</tr>
</tbody>
</table>
Harvested volume (daily)

- **Storage**
 - 250 – 1,000 ML
Bore Locations

AM46A,B (1.5-4; 4.3-12)

AM47A,B (2.3-3.5; 0.3-)
Lithology

Seismic transect, Oxley Road (SW-S central)

- Superficial
- Pinjar Shales
- Leederville Aquifer
- Superficial Leederville Formation
- Sltst / Sst
- Sst
- Pinjar Shales (?)

Depth in meters:
- 0m
- 50m
- 100m
- 150m
- 200m
- 250m

Lithology layers:
- AM46A.B
- AM47A,B
- 2002-1102
- 2002-1147
Injection Rates

<table>
<thead>
<tr>
<th>Location</th>
<th>Transmissivity (m²/day)</th>
<th>Injection Rate (ML/day)</th>
<th>Injection Rate (L/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jandakot (WC)</td>
<td>100</td>
<td>3 - 4</td>
<td>25 - 33</td>
</tr>
<tr>
<td>Midland (MRA)</td>
<td>13 - 22</td>
<td>0.5 - 0.8</td>
<td>6 - 9</td>
</tr>
<tr>
<td>Wungong</td>
<td>50</td>
<td>1.5 - 2.8</td>
<td>17 - 23</td>
</tr>
</tbody>
</table>
Water Quality

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Surface Water</th>
<th>Groundwater</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>TDS</td>
<td>6</td>
<td>600</td>
</tr>
<tr>
<td>Ca</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>TN</td>
<td>0.74</td>
<td>1.8</td>
</tr>
<tr>
<td>TP</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>Fe</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>HCO3</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>TSS</td>
<td>150</td>
<td>55</td>
</tr>
<tr>
<td>SO4</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

- Pesticides
- Hydrocarbons
- Heavy metals
Target NDW Quality

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>< 2 mg/L</td>
</tr>
<tr>
<td>BOD</td>
<td>< 5 mg/L</td>
</tr>
<tr>
<td>TN</td>
<td>< 5-10 mg/L</td>
</tr>
<tr>
<td>TP</td>
<td>< 1 mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>< 0.5 NTU</td>
</tr>
<tr>
<td>E.Coli</td>
<td>< 1 TFC/100mL</td>
</tr>
<tr>
<td>Chlorine Residual</td>
<td>> 1.0 mg/L</td>
</tr>
<tr>
<td>Bacteria Removal</td>
<td>> 5 log removal</td>
</tr>
<tr>
<td>Virus Removal</td>
<td>> 6.5 log removal</td>
</tr>
<tr>
<td>Protozoa Removal</td>
<td>> 5 log removal</td>
</tr>
</tbody>
</table>

Nutrients: Resultant application rates within DoW guideline limits for irrigation of coarse grained soils near ‘sensitive waters’

Microbiological quality: In accordance with Australian Guidelines for Water Recycling, and as informed by qualitative HRA
Treatment

• For injection:
 – Removal of TSS and Nutrients
 – Coagulation?
 – Filtration (< 5 micron to prevent clogging)
 – Disinfection?

• For NDW supply
 – Removal of iron and TSS
 – Clarification
 – Filtration
 – Disinfection

• Sludge disposal
Sewer Mining
Existing WC Infrastructure
Wastewater Flows
Supply-Demand Balance

There is potential for sewer mining to increase detention times during peak NDW demand periods.

Require supplementary flow from Anaconda WWPS

Available - Waterworks Rd PS plus Anaconda St PS (WC Forecast [2007])

Available - Waterworks Rd PS (WC Forecast [2007])
Water Reclamation Plant

• Assumed wastewater characteristics:
 – No data, assume characteristics of Woodman Point
 • COD = 735 mg/L
 • TKN = 65 mg/L
 • TP = 12 mg/L
 – No significant trade waste in Waterworks Rd catchment, though more at Anaconda

• Two process options (both bio-P removal):
 – Conventional Oxidation Ditch + Tertiary UF + UV + Cl
 – Oxidation Ditch Membrane Bioreactor + UV + Cl
Water Reclamation Plant

• Redundancy
 – 2 x 50% capacity process trains
 – Emergency backup from potable network?

• Sludge Management
 – EAS returned to sewer
 – Dilution required for quality of EAS to meet trade waste acceptance criteria
 – 36 ML/d of wastewater required to produce 28 ML/d of NDW

• High level of odour control (covers, scrubber, stack)
Process Flow – MBR Option

Raw Wastewater Quality
COD = 735 mg/L
TSS = 340 mg/L
TKN = 65 mg/L
TP = 12 mg/L
Design Flow, Q = 265 ML/d
Diurnal peaking factor = 1.4

5R = 120d at 25°C (summer)

Waterworks Rd
Pump Station 1800 ML/d

Anacordia
Pump Station 2720 ML/d

Enclosed Grit & Screenings Bin

Raw Wastewater for Waste Solids Dilution 720 ML/d

50 m Exhaust Stack

Chlorination and Drum Storage
2 No. 308 kph Cl₂ drums

Final Effluent
2600 ML/d
COD < 60 mg/L
TSS < 1 mg/L
TN < 32 mg/L
TP < 0.05 mg/L
Total Chlorine > 1 mg/L

Tertiary Treatment Plant
By-Pass to Seaver

Waste Solids Balance Tank 50 ML

Waste Solids To Sewer
5.5 ML/d
COD < 2500 mg/L
TSS < 1500 mg/L
TN < 150 mg/L
TP < 50 mg/L

Chlorine Contact Tank
3 No. 0.2 ML
30 min contact time
6 mg/L Cl₂ dose
Concept Layout – MBR Option
Technical Issues & Risks

• NDW demands & staging
• WRP process:
 – Process validation (additional treatment barrier?)
 – Colour of recycled water
 – Low plant loading
• EAS:
 – Transfer of EAS & excess wastewater
 – Relaxation of trade waste acceptance criteria (dilution)
• Supply-demand balance
• Operation of Woodman Point WWTP
Content

1. Overview
2. Water Demands
3. Options Assessment
4. Governance Issues
Thank you for listening

www.ghd.com
Governance and Project Management
Lessons Learned from Practical Experience – Wungong Urban Water Project

Stuart Devenish | Devenish Consulting

Stewart Dallas | Woodsome Management
The Mouse Trap

- hammer
- spring
- platform
- hold-down bar
- catch
Lessons Learned:

Corporate Governance

Project Governance

Perspective: PROPONENT
Lessons Learned:

Corporate Governance

Motivations

Implications

IMPORTANCE

Importance → Level of Commitment → Risk Profile

- Direct costs
- Opportunity costs
- Time costs
Lessons Learned:

Corporate Governance

- Development Strategy: IP access, collaboration
- Incremental decision-making step points
- Cost parameters
Lessons Learned:

Corporate Governance – Wungong Urban Water

• Implementation of Total Water Cycle Management
• Potential for 85% water substitution
• Demonstration Project: large scale urbanisation
• Irrigation demand exceeds groundwater availability
• Federal funding assistance: Water Smart Australia program
Lessons Learned:
Lessons Learned:

Project Governance

- **Demand**: Water balance choices and ‘level of service’ choices
- **Supply**: Feasibility of sources
- **Technical**: Sourcing, treating, storing, distributing
- **Environmental**: Risks and capacity to mitigate
- **Health**: Risks and capacity to mitigate
- **Regulatory**: Capacity to satisfy regulatory requirements
- **Social**: Marketability of service to prospective purchasers
- **Economic**: Costs, revenue, timing
Lessons Learned:

Project Governance

H2Options:

Step 1 – Develop Plan
Step 2 – Determine Feasibility
Step 3 – Develop Business Case
Step 4 – Secure a Service Provider
Step 5 – Clearances and Approvals
Step 6 – Detailed Design
Step 7 – Review prior to implementation
Lessons Learned:

Project Governance

Draft Approval Framework for the use of Non-Drinking Water in WA:

Step 1 – Option evaluation and Concept Design Study

Step 2 – Preliminary Design Study

Step 3 – Detailed Design Study

Step 4 – Implementation
Lessons Learned:

Wungong Urban Water Project - Non-Potable Water Supply
Project Plan Framework

Concept Development
- Preliminary Economic Analysis
 - Deliverables:
 1. Critical pricing parameters
 2. CSO/other reliance
 3. Broad feasibility
 - Methodology:
 See Work Breakdown Structure (WBS)

Supply Option
- Deliverables:
 1. Demonstrated supply option capable of satisfying
 2. Technical
 3. Environmental
 4. Social
 5. Financial
 6. Regulatory
 7. Risk
- Methodology:
 Decision matrix flowchart
 Option Assessment Plan (OAP)
 See Work Breakdown Structure (WBS)

Business Plan
- Deliverables:
 1. BP capable of engaging a service provider
 2. Basis for expectations
 3. Scope of work remaining
- Methodology:
 See Work Breakdown Structure (WBS)

Service Provider Engagement
- Deliverable:
 Service provision contract

Design Approvals Implementation
- Deliverables:
 1. Technical development & design
 2. Regulatory approvals
 3. Construction
 4. Commissioning
 5. Administration, Maintenance, Management

Note: Non-potable water distribution, reticulation and plumbing standards are addressed separately to this framework.

Prepared by ARA, October 2008
Lessons Learned:

Project Governance

Economics:

Costs:
• Supply infrastructure
• Distribution headworks
• Reticulation mains
• On-lot costs

Revenue:
• Consumption charges
• Offsets
• Subsidies
• Developer contributions

Timing:
• Capital availability
Lessons Learned:

Project Governance

Economic Regulation Authority, Inquiry into Pricing of Recycled Water in Western Australia, 6 February 2009:

“It would generally be inefficient to develop recycling options that have a per kL cost that is higher than traditional sources ...”

“... there is a risk that recycling targets could artificially encourage projects that are not the most efficient options to balance supply and demand (or discourage others that are).”
Lessons Learned:

Project Governance

Decision Criteria

Weightings

Points of view:

1. Proponent / Developer
2. Regulators
3. Providers
4. Consumers (Local Government)
Governance and Project Management
Lessons Learned from Practical Experience – Wungong Urban Water Project